skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Wang, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hoadley, C; Wang, X C (Ed.)
  2. Hoadley, C; Wang, X C (Ed.)
    Supporting children to make, explain, and reason through decisions about how to investigate scientific phenomena allows them to make sense of science content and practices in meaningful ways, positions children as agentic, and enables more equitable and just teaching. Novice teachers may use certain strategies and face unique challenges when engaging in this work. Drawing on written lesson plans, videorecords of lesson enactments, and interviews, this study explores five preservice teachers’ ideas and practices that positioned children as epistemic agents and identifies common tensions they negotiated. Each teacher demonstrated beliefs in children’s brilliance that were related to their practices, such as re-centering children’s ideas, working toward collective understanding, and engaging children in science practices. This study highlights early strengths of these five teachers and raises questions about teacher learning. 
    more » « less
  3. Varbanov, PS; Zeng, M; Wang, X; Wang, B (Ed.)
    While the treatment of wastewater is an important issue that received significant attention in the past decades, improving the related technologies is only one part of a more complex task. Domestic wastewater is usually transported via the city’s sewer system, and in many places, it is combined with rainwater. This means that disturbances, such as heavy rainfall or failures in the pipeline system, can lead to floods of polluted wastewater. Thus, it is important to design such transportation systems to be reliable. This work presents a methodology for generating several potential extensions to retrofit an existing water transportation network and increase its reliability. Reliability and feasibility evaluation is performed via the P-graph framework, after which the nondominated networks are collected. Results of the presented case study show that reliability can be increased 3 times by adding only some of the possible extensions to the network. The methodology proposed analysed 512 plausible retrofitting alternatives, from which 20 are non-dominated networks. This range of alternatives provides designers with insightful information to decrease water pollution and the vulnerability of wastewater systems. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  4. Kilgour, D.M.; Kunze, H.; Makarov, R.; Melnik, R.; Wang, X. (Ed.)
    Modeling open quantum systems is a difficult task for many experiments. A standard method for modeling open system evolution uses an environment that is initially uncorrelated with the system in question, evolves the two unitarily, and then traces over the bath degrees of freedom to find an effective evolution of the system. This model can be insufficient for physical systems that have initial correlations. Specifically, there are evolutions ρS=trE(ρSE)→ρ′S=trE(UρSEU†) which cannot be modeled as ρS=trE(ρSE)→ρ′S=trE(UρS⊗ρEU†). An example of this is ρSE=|Φ+⟩⟨Φ+| and USE=CNOT with control on the environment. Unfortunately, there is no known method of modeling an open quantum system which is completely general. We first present some restrictions on the availability of completely positive (CP) maps via the standard prescription. We then discuss some implications a more general treatment would have for quantum control methods. In particular, we provide a theorem that restricts the reversibility of a map that is not completely positive (NCP). Let Φ be NCP and Φ~ be the corresponding CP map given by taking the absolute value of the coefficients in Φ. The theorem shows that the CP reversibility conditions for Φ~ do not provide reversibility conditions for Φ unless Φ is positive on the domain of the code space. 
    more » « less